Eilenberg-Moore models for fibrations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eilenberg-moore Model Categories and Bousfield Localization

Talk 1: Big Goal of Alg Top, operads and model categories, fix notation for model categories, remarks about how difficult it is to verify model category axioms. Motivation from equivariant spectra, and discussion of Kervaire. Monoidal model categories, define the inherited model structure on the category of algebras over an operad. Basic facts about Bousfield localization. Preservation theorem ...

متن کامل

Hsp Subcategories of Eilenberg-moore Algebras

Given a triple T on a complete category C and a factorization system E /M on the category of algebras, we show there is a 1-1 correspondence between full subcategories of the category of algebras that are closed under U -split epimorphisms, products, and M -subobjects and triple morphisms T S for which the induced natural transformation between free functors belongs to E .

متن کامل

Eilenberg-Moore Monoids and Backtracking Monad Transformers

We develop an algebraic underpinning of backtracking monad transformers in the general setting of monoidal categories. As our main technical device, we introduce Eilenberg–Moore monoids, which combine monoids with algebras for strong monads. We show that Eilenberg–Moore monoids coincide with algebras for the list monad transformer (‘done right’) known from Haskell libraries. From this, we obtai...

متن کامل

The Thomified Eilenberg-Moore spectral sequence

where Xs+1 is the fiber of gs. We get an exact couple of homotopy groups and a spectral sequence with E 1 = πt−s(Ks) and dr : E s,t r → Es+r,t+r−1 r . This spectral sequence converges to π∗(X) (where X = X0) if the homotopy inverse limit lim←Xs is contractible and certain lim 1 groups vanish. When X is connective, it is a first quadrant spectral sequence. For more background, see [Rav86]. In th...

متن کامل

Exponential Kleisli Monoids as Eilenberg-Moore Algebras

Lax monoidal powerset-enriched monads yield a monoidal structure on the category of monoids in the Kleisli category of a monad. Exponentiable objects in this category are identified as those Kleisli monoids with algebraic structure. This result generalizes the classical identification of exponentiable topological spaces as those whose lattice of open subsets forms a continuous lattice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1982

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1982-0670928-x